Ui componentsTools

Label answers and add to your own analytics system

Log question-answer data and annotations to your analytics system

Overview

The "Label Answers" tool pattern allows you to annotate question-answer pairs and log the data to your own analytics system. This is useful for:

  • Building a labeled dataset of user questions and AI responses
  • Tracking conversation quality metrics
  • Identifying content gaps in your knowledge base
  • Analyzing user sentiment and question patterns
Note
Note
Tools are available for the Enterprise tier. Please contact support@inkeep.com for details.

Basic Implementation

This example uses the annotationSchema from Common Tools to classify and log information about each question-answer pair to your analytics system.

import { z } from "zod";
import { zodToJsonSchema } from "zod-to-json-schema";
import { annotationSchema } from './common-tool-schemas.ts';
import myAnalyticsSdk from './my-analytics-sdk';
 
const aiChatSettings = {
  getTools: () => [
    {
      type: "function",
      function: {
        name: "annotateQuestion",
        description: "Analyze and annotate this question-answer pair for quality tracking and analytics.",
        parameters: zodToJsonSchema(annotationSchema),
      },
      // No buttons needed as this is just for logging
      renderMessageButtons: () => [],
    },
  ],
  
  // Log the tool call data to your analytics system
  onToolCall: (toolCall, ctx) => {
    if (toolCall.name === "annotateQuestion") {
      const annotations = toolCall.arguments;
      const { conversation } = ctx;
      
      // Get the latest user question and AI response
      const userQuestion = conversation.messages
        .filter(msg => msg.role === "user")
        .pop();
        
      const aiResponse = conversation.messages
        .filter(msg => msg.role === "assistant" && !msg.tool_calls)
        .pop();
      
      // Log to your analytics system
      myAnalyticsSdk.logEvent("question_answer_annotated", {
        questionText: userQuestion?.content,
        answerText: aiResponse?.content,
        annotations,
        conversationId: conversation.id,
        timestamp: new Date().toISOString()
      });
    }
  }
};

On this page